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The Ashkin-Teller quantum chain and conformal invariance 

G von Gehlen and  V Rittenberg 
Physikalisches Institut, Universitat Bonn, Nussallee 12, D-5300 Bonn 1, West Germany 

Received 26 February 1986 

Abstract. We study the finite-size effects for the four-state one-dimensional quantum chain 
introduced by Kohmoto et a /  using different boundary conditions. From the corrections 
to the ground-state energy for periodic boundary conditions we verify that the central 
charge of the Virasoro algebra is equal to one in the whole domain of criticality. Our 
numerical study suggests a new relation between the corrections to the ground-state energy 
with free boundary conditions and with periodic boundary conditions. Various critical 
exponents including the surface ones and those corresponding to the para-fermions are 
determined. 

1. Introduction 

In this paper we study finite-size effects on the spectrum of the four-state one- 
dimensional quantum chain: 

where 

I 1 0  0 0  y=( O i  0 0  
0 0 - 1 0  

\O o o -i 

r =  
0 0 0 1  

: 0" :I. 
0 0 1 0  

(1.2) 

The self-dual Hamiltonian (1.1) was proposed by Kohmoto et a1 (1981) and represents 
one of the possible Hamiltonian versions of the Ashkin-Teller (1943) model. In 
equation (1.1) A plays the role of the inverse of the temperature T, E is a coupling 
constant and  N denotes the number of sites. 

The phase diagram of this system is shown in figure 1. It consists of a fully ordered 
ferromagnetic region (labelled I ) ,  a partially ordered phase (11) separated by two Ising 
lines from the ferromagnetic phase ( I )  and  the paramagnetic phase (III) ,  an antifer- 
romagnetic phase (IV) and a critical fan region (VI. The border between the critical 
fan and regions I and I11 is of Kosterlitz-Thouless type. If we stay on the self-dual 
line A = 1 and vary E ,  we move from the four-state Potts model ( E  = 1) to the Ising 
model ( E  = 0), the Kosterlitz-Thouless model (E = -J2/2)  and a first-order phase 
transition ( E  = -1). It was argued by Kohmoto et a1 (1981) (see also Kadanoff and  
Brown 1979) that on the A = 1 line the scaling dimensions of the energy operator (x,), 
the magnetic field operator (x,) and the electric field operator ( x p )  are 

x, = xj- XH =; x p  = axT (1.3) 
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E 

Figure 1. Phase diagram of the Ashkin-Teller quantum chain.  I is the ferromagnetic region, 
I I  a partially ordered phase, I l l  the  paramagnetic phase, 1V the antiferromagnetic phase 
and  V the critical fan. 

where the function xT = x T (  e )  is 

XT = 5712 cos- '(-&).  ( 1.4) 

In the region - 4 2 1 2 5  E s 1, A = 1 predictions (1.3) were shown to be correct by 
high-temperature expansions (Kohmoto er a1 1981) and by finite-size scaling (Igl6i 
and S6lyom 1984, Alcaraz and Drugowich de Felicio 1984). The same authors have 
also computed several critical points on the curves separating regions V and I, and I 
and I1 respectively (these curves are not known analytically). 

Now, i t  has been shown recently (von Gehlen et al 1986) that at second-order 
phase transition points of a one-dimensional quantum chain the powerful consequences 
of conformal invariance can be exploited. Conformal invariance for a one-dimensional 
chain with the linear coordinate x arises in the following way: the Hamiltonian defines 
an  evolution in the Euclidean time coordinate 7. Scaling H by an appropriate chosen 
factor 6, one obtains conformal invariance in the space of x and T. 

The aim of this paper is to further explore the model given by equation (1.1) using 
conformal invariance and finite-size scaling for different boundary conditions. In  this 
way one can identify more operators and find their scaling dimensions. We can thus 
determine the surface exponents and  the exponents corresponding to the para-fermionic 
operators (Fradkin and Kadanoff 1980). At the same time we have also studied the 
behaviour of the critical exponents inside the critical fan (-1 < F s -4212) and we 
have found a few surprises. 

It was recently pointed out by Cardy (1986a) and Blote er a1 (1986) that for periodic 
boundary conditions at the critical point, the finite-size corrections to the ground-state 
energy are related to the central charge of the Virasoro algebra corresponding to the 
given phase transition. We have studied these corrections and have determined the 
central charge not only for the A = 1 ( - 4 2 1 2 s  e 1) line but also for the critical fan 
region. We have repeated this study taking free boundary conditions and have dis- 
covered empirically that also in the free boundary case the finite-size corrections are 
similarly related to the central charge of the Virasoro algebra, the difference being just 
a factor 4. 
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Last but not least, our interest in this model comes from the fact that recently we 
studied six- and eight-state models generalising the Hamiltonian (1.1) (von Gehlen 
and Rittenberg 1986a). There we have also found critical exponents continuously 
varying with the coupling constant and we were interested in comparing the behaviour 
of the critical exponents. 

This paper is organised as follows. In  5 2 we summarise the implications of 
conformal invariance on the finite-size scaling behaviour of various energy gaps (Cardy 
1984a, 1986b, von Gehlen et a1 1986) and we show how to obtain the critical exponents. 
We also discuss the corrections to the ground-state energy. In 5 3 we present our 
numerical results as well as several conjectures suggested by the data. Our conclusions 
are given in 8 4. 

2. Conformal invariance and finite one-dimensional chains 

Before proceeding with a summary of the general theory let us further specify the 
Hamiltonian (1.1) through boundary conditions. If we take 

rN+,  = e x p ( i r o / 2 ) r ,  ( o = O ,  1 ,2 ,3 )  (2.1) 

we call the corresponding Hamiltonian If'". I f  T N + ,  = O  (free boundary conditions) 
we call the Hamiltonian The Hamiltonians commute with the 2, charge operator: 

where 

0 0 0 0  

q = o o 2 0  i: 1 :: 11 (2.3) 

(we follow closely the notations of von Gehlen et a1 (1986)). 
split into four 

charge sectors and we denote the corresponding matrices by Ifdo'  and If:' ( Q  = 0, 1 , 2  
and 3). Self-duality and the dihedral symmetry of the problem give the following 
relations between these matrices: 

Because of charge conservation, the Hamiltonians If"' and 

~f&dJ = H(P) 0 ~f,'dJ = H ( ~ J  (Q, d=o, 1,273) 

(2.4) 
The eigenvalues of fhe  matrices If&" will be denoted by Edo'( P, r )  ( r  = 0, 1 , 2 , .  . .) 

where EdQ)(P, 0) < ELQ'(P, l ) ,  etc. Here P denotes the momentum of the statet. 

H \ F )  = H ( F )  
3 .  

t For d # 0 on  N sites and  in the charge sector Q, eigenstates of H with momentum P may be defined by 

N1'21P, Q,. . .)= la,, a*.. . . , a , ~ ) + e x p ( 2 n i c , / n N j l a 2 ,  a3,. . . , a ,  a,)+. . . 
+ e x p ( 2 . r r i c , ~ - , / n N j l a , ~ ,  a,, . . . , aN-,) 

with 

CA = & ( a ,  +. . . t ai ) - cod + pn jk 

if the symmetry is Z,, and the states are  labelled by a,, a?,  . , . , a, E Z,,. 
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Similarly, E:’( r )  denotes the spectra of the matrices H G ’ .  For brevity, the ground-state 
energies of the Hamiltonians with periodic (0 = 0) and  free boundary conditions will 
be denoted by 

EhP’= E‘O’ 0 (030) EhF’ = EF’(0 ) .  ( 2 . 5 )  

In a conformal invariant theory, at the critical point the various energy gaps can 
be used to determine the critical exponents of various operators (Cardy 1986b). We 
denote by x the scaling dimension and by s the spin of an  operator. We can determine 
the scaling dimensions of the two order operators of our system using the relations 

(2 .6)  Po’ - Iim N ( E ~ ’ ( o ,  0) - E;‘’) = 2rr6xo (Q=1,2) ‘ - N - m  

(because of the symmetry relation (2.4), x, = xj). As we will see in the next section, 
x1 will be identified with xH and x2 with xp of equation (1.3). The order operators 
are spinless. In equation (2.6) 6 represents an unknown constant which appears because 
one can always multiply the Hamiltonian (1.1) by an  arbitrary factor. 

The surface exponents of the order operators can be determined using the gaps 

The scaling dimension of the energy density operator x, is obtained from the 

(2.8) 

equation 

R“’ = lim N (  Ebo’(O, 1) - EhP’) = 2r5x,. 
N - c c  

The normalisation factor 6 can be determined from 

Let us stress that in this paper we have not done a complete analysis of higher 
excitations for various momenta, as was done for the three-state model (von Gehlen 
and Rittenberg 1986b). Such an  analysis would have revealed many more operators. 
We have confined ourselves only to the lowest excitations and thus to operators with 
the smallest scaling dimensions. 

We now turn to the para-fermionic operators (Fradkin and Kadanoff 1980) with 
spin s = 0 / 4  and scaling dimensions xo.o. The values of xo,o can be obtained from 
the equations 

As is by now well known, the possible values of the scaling dimensions and spins 
are limited in two dimensions (or equivalently for a one-dimensional quantum chain) 
to a few discrete values. This is the case if the phase transition corresponds to a 
Virasoro algebra with a central charge c < 1 (Belavin et a1 1984, Friedan er a1 1984). 
Since for our Hamiltonian (1.1) we know already that some exponents vary continuously 
(see x, and x,, in equation (1.3)) it results that c 3 1. Actually one knows more. From 
the known equivalence between the Ashkin-Teller model and the Thirring (1958) 
model (see Drugowich de  Felicio and Koberle 1982) for which the central charge can 
be computed analytically (Fubini et a1 1973), we learn that c = 1. It was suggested by 
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Blote er a1 (1986) (see also Cardy 1986a) that the finite-size corrections to the ground- 
state energy E r ’  (periodic boundary conditions) are related to the central charge c :  

- E r ’ /  N = [[ab” + ;T( aiP’/ N 2 )  + . . .] (2.1 1 )  

clip’ = c. (2.12) 

Relations (2.11) and (2.12) can be combined with (2.9) to determine c. I f  the central 
charge c is known, equation (2.11) gives a second determination of 6, as will be shown 
in the next section. After we have convinced ourselves that c is indeed equal to unity, 
we have used (2.1 1 )  in order to determine more precisely 5, assuming c = 1. 

An interesting part of our study was the numerical determination of the finite-size 
correction to the ground-state energy in the case of free boundary conditions: 

-EbF’/N= 5[abF’+ajF’/N+~.rr(a:F’/NZ)+. . .]. (2.13) 

Here we should obviously have 
ab“ = ab“ (2.14) 

but we have kept two different notations in order to check that our numerical fits give 
the same result. In equation (2.13), represents the surface energy and a y ’  is the 
constant of interest. As will be shown, all the numerical data suggest 

where c is again the central charge of the Virasoro algebra. 

3. Numerical results 

3.1. Corrections to the ground-state energy 

We have considered the quantum chains defined by ( 1 . 1 )  and have computed the 
various quantities defined in the previous section using Van den Broeck-Schwartz 
(1979) approximants. (In all cases we have used chains from two up  to ten sites.) 

In table 1 we list the approximants for the quantities [abP’, 2 ~ 5 a Y ’ ,  ,$abF), .$aiF’ 
and 27r&2r’ defined by equations (2.11) and (2.13) (for later convenience we have 
given the values for 2 ~ 5 a Y ’  and 2 ~ 5 ~ : ~ ’  instead of [a:”and ,$aiF)). In the case of the 
four-state Potts model ( E  = 1 )  the ground-state energy for the infinite volume case is 
known exactly. For the Ising case ( E  = 0) the leading finite-size corrections are also 
known exactly. The values of E have been chosen both outside the critical fan 
( E  3 -d2 /2 )  and inside the fan ( E  G -d2/2) .  For E < -d2 /2  we have stayed on the 
self-dual line A = 1 with the exception of the point E = - E  where we have also 
considered the point with A =OS. In order to check the errors in our approximants, 
the calculations have been repeated at the dual point E = -%, A = 2 and we have found 
results fully consistent with those at A = 0.5. In table 2 we give the approximants for 

We now determine the value of the central charge c. Using equations (2.9) and 

R ” ’ / ~ I @ \ ~ ’  = l/c. (3.1) 

In table 3 we list the values of this ratio and  in the whole domain of E we find it 

p ( p )  p ( P )  P(F) p ( F )  and R(1). 
1 1  2 1  I ,  2 

(2.11) we have 
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Table 1. Van den Broeck-Schwartz approximants for @b“, 2n5aiP’ defined by equation 
(2.11) and for ta.b”, @IFJ and 27r.$aLF’ defined by equation (2.13) for various values o f  E .  

The quantities with an asterisk are exact. 

1 

3 
< 

I 
3 

0 
I _ _  

2 
3 

_ -  

- J2J2 

39 
41 

-- 
( A  = 1) 

( A  = 0.5) 

39 
41 

_- 

99 
101 

_ _  

I 9 9  
201 

_ -  

2 In 2 - f +  = 
0.886 294 
0.969 312- 
0.969 3 15 
1.064 398- 
1.064 399 

2.196 152- 
2.196 153 
3.161 74 
3.161 75 

3.566 32 
20.563 6- 
20.564 1 
15.428- 
15.430 
50.543- 
50.545 

100.530 6- 
100.531 1 

4J T* 

3.566 30- 

2 In 2-f’ 

0.963 14- 
0.963 18 
1.064 396- 
1.064 400 

2.196 145- 
2.196 155 
3.161 750- 
3.161 755 
3.560- 
3.569 

20.564- 
20.565 
15.429- 
15.431 
50.500- 
50.542 

100.523- 
100.531 

4/ H *  

4.9345- 
4.9370 
5.323- 
5.325 

5.6696 

8.1620- 
8.1621 
9.5928- 
9.5930 

5.6695- 

2T* 

10.10- 
10.12 
23.0- 
26.0 

16.6 

33.0 

41.0 

16.2- 

30.5- 

36.0- 

(-0.1888)- 
(-0.1 891) 
(-0.215)- 
(-0.218) 
(-0.259)- 
(-0.261) 

1-2*/77 
(-0.8256)- 
(-0.8257) 
( -  1.3 106)- 
(-1.3108) 
(-1.5135)- 
(-1.5140) 

(-10.00)- 
( -  10.04) 
(-4.919)- 
(-4.923) 

(-24.95)- 
(-25.05) 
(-49.95)- 
(-50.10) 

1.03- 
1.12 
1.27- 
1.29 
1.40- 
1.42 

2.02- 
2.04 
2.39- 
2.40 
2.50- 
2.53 
6.0- 
6.5 
4.1- 
4.4 
9.5- 

10.7 
9.0- 

14.0 

I *  
I =  

consistent with one. As mentioned in the previous section, this is the expected value 
for c. A closer inspection of the values obtained for a y ’  and UT) (see table 1) suggest 
the relation 

Q:p’ = 4&=’. (3 .2 )  

The validity of equation (3 .2)  can be seen in table 3 .  Its apparent failure at E = 1 can 
be explained by the known poor convergence which occurs for the four-state Potts 
model. Relation ( 3 . 2 )  was also checked for the three-state Potts model (von Gehlen 
and Rittenberg 1986b) where it is obtained with much better precision. In  the king 
case the explicit formulae (see, e.g., Burkhardt and Guim 1985) satisfy equation (3 .2) .  

3.2. Scaling dimensions of the order operators (bulk)  

Let us now analyse the behaviour of the approximants corresponding to the order 
operators. In order to facilitate our job, in table 4 we have organised the data in a 
suggestive way. From the observation that the ratio 8P‘,0’(2.rr5a:p’)-’ is equal to unity 
we obtain 

( 3 . 3 )  

in agreement with equation ( 1 . 3 )  if we identify x, with xH. We now notice that the 
ratio P:0’(4P\O’)-’ behaves liketx, for - & I 2 6  E c 1 and like 2/xT for -1 < E 6 - d 2 / 2 .  
Since for Pko’ we have determined only the lowest excitation we conclude that we must 
have here two operators with scaling dimensions x;’ and x,” respectively. These show 

-1 
1 - 8  
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Table 2. Van den Broeck-Schwartz approximants for Pi"' and P y '  defined by equation 
(2.6). Pi" and Pi" defined by equation (2.7) and for R I 1 '  defined by equation (2.9). The 
quantities with an asterisk are exact, those with a dagger are approximants with a poor 
convergence. 

1 

1 

I 
1 

0 
L _ -  

2 
3 

_ -  

-J2/2 

3 9  
41 

_ -  
( A  = 1) 

( A  = 0.5) 

39 
41 

_ -  

99 
101 

-_ 
199 
20 I 

_ _  

0.63- 
0.64 
0.664 4- 
0.665 8 
0.708 65- 
0.708 75 

1.020 438- 
1.020 442 
1.19909- 
1.199 15 
1.2634- 
1.2640 
2.697- 
2.700 
1.926 15- 
1.926 17 
4.08- 
4.10 
5.6- 
5.7 

a"* 

0.63- 
0.64 
0.943 77- 
0.943 80 
1.165 25- 
1.165 32 

3.060 7- 
3.060 8 
4.4789- 
4.4792 
5.0555- 
5.0565 
4.405- 
4.415 
3.36- 
3.37 
4.263 5-  
4.265 0 
4.186- 
4.190 

;"* 

2.2- 
2.3 
1.871- 
1.876 
1.7232- 
1.7236 
5" 
1.3606- 
1.3607- 
1.2841- 
1.2842 
1.255- 
1.266 
1.08-t 
1.12 
0.8403- 
0.841 1 
1.0513- 
1.0515 
1.034- 
1.040 

I *  

2.2- 
2.3 
2.658- 
2.661 
2.827- 
2.840 
"* 
4.0045- 
4.6733- 
4.6726- 
4.6733 
4.95-1. 
5.2 
4.36- 
4.40 
3.365- 
3.371 
4.1977- 
4.1982 
4.147 055- 
4.147 056 

4.94- 
4.97 
- 

5.61 

2"* 
8.165 

9.593 

10.105- 
10.115 
21.0- 
22.5 
15.7- 
15.9 
30.0-1 
37.0 
40.0-1. 
52.0 

Table 3. The ratio 4a iF ' / u iP '  and R " ' / 2 a @ ~ P '  for various values of E .  * and + as in 
table 2 .  

39 
41 

_- 3 9  
41 

-_ 
I 

E 1 5 3 0 -1 -5 ' -v'2/2 ( A = l )  ( h z 0 . 5 )  -$ -% 3 

4a$F'/n$P' 0.88 0.96 0.995 1* 0.99 0.99 0.99 1.0 1.04 1.2 1.2 
R'1'/27r&7~P' 0.998 - 1.00 I* 1.000 1.000 0.9995 0.9 0.96 1.05f 1.2i 

the following behaviour: 

xi' = $ X T  (3.4) 

x2 = l / x T .  ( 3 . 5 )  
E3 

The fact that for F = - J 2 / 2  there is a level crossing was explicitly seen. The operator 
xz' can be identified with the operator x p  of equation (1.3). The operator xy is new. 

3.3. Scaling dimensions of the order operators (surface) 

Let us now turn our attention to the surface exponents. Since P',O'( PIF')-' is equal to 
$xT  we have 
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Table 4. Ratios of approximants which help to derive equations (3.3)-(3.5). The function 
x T ( e )  is defined by equation (1.4). 

1 0.25 0.28 1.2 0.25* 1 .o* - 
5 0.354 694 0.3551 1.0155 0.354 7 0.999 

0.41 1 067 0.41 12 1 .oo 0.41 1 0 1.014 - 
0 0.5 O S *  1 .o* 0.5* 1 .o* - 

0.75 0.7499 1.019 0.749 86 0.9999 - 

3 

I 
5 

- 

I 
- 2  

2 - - 3  0.933 810 0.9333 1.026 0.933 82 1 .oooo 
-J2/2  1 .o 1.0188 0.99t 1.000 2 0.99 1 .o 
_ -  41 39 2.504 208 2.7t 2.64 0.408 0.9 0.399 
( A  = 1) 
_ -  41 39 2.504 208 2.29 2.29 0.437 0.94 0.399 
( A  = 0.5) 
_ _  101 99 3.940 046 3.92 3.92 0.26 1.04 0.254 
_ _  199 5.562 847 5.5 5 .5  0.18 1 . 1  0.180 201 

The ratio 4P(,0’(P:F’)-’ is equal to unity for -4212 s E s 1 and to $xT for -1  < E 

-4212. This means that we again have two surface exponents x; .  and x ; , ~ :  

x &  = 1 (3.7) 

x;,, = 2 / x T .  (3.8) 

The results described by equations (3.6)-(3.8) are very interesting. Firstly, these 
confirm the prediction by Cardy (1986b) that for the Kosterlitz-Thouless phase transi- 
tion ( E  = -4212)  we have xl,, =:. At the same time for the four-state Potts transition 
( E  = 1 )  we get x l , ,  = x;~ = 1, again in agreement with a prediction by Cardy (1984b). 
Two previous determinations of x ] , ~  gave = 0.78 (Droz et a1 1985) and x , , ,  = 0.9 
(von Gehlen et a1 1986) but now the issue is settled. 

3.4. Scaling dimensions of the energy density 

As the reader might have noticed we have not given values for the approximants 
corresponding to R‘O’ (see equation ( 2 . 8 ) )  which would determine x,. For - J 2 / 2 <  E S 
1 ,  the prediction x,  = xT (see equation (1.3)) was already confirmed by previous 
calculations. We find that for -1  < E < -4212 the second lowest level in the Q = 0 
sector belongs to momentum P # 0. Using the gap in the Q = 0, P = 0 sector (this uses 
the third level of Q = 0) x, = 2.000 for E = - J 2 / 2  as expected. In the critical fan region, 
level crossings cause numerical problems, so we have no reliable results for x ,  there. 

3.5. Scaling dimensions of the paralfermionic operators 

We now consider the para-fermionic operators and make use of equation (2.10). The 
approximants for P I 1 ) ,  P:*)  and P:” are given in table 5. The scaling dimensions for 
the operators with spin 4 are 
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Table 5. Van den Broeck-Schwartz approximants for the quantities P:”, P:” and Piz1 
defined by equation (2.10). The ratio Pj1‘/27rtaiP1 gives the scaling dimensions of the 
spin-: para-fermion. The ratio 4P\*’/5~rta;‘’ is computed in  order to derive equation 
(3.11). The ratio Pi2’/27r[aiP’ is computed in order to derive equations (3.13) and (3.14). 
The function x ~ ( E )  is defined by equation (1.4). 

1 2.45- 2.97- 2.22- 0.51 0.973 0.46 0.5 
2.55 3.03 2.27 
2.1 105- 3.32- 3.77 0.3966 0.999 0.708 0.7093 
2.1114 3.33 

2.02 3.54 

3 
5 

1 
3 2.01- 3.44- 4.66 0.355 0.98 0.821 0.8221 

0 1.963 3309 3.9267 6.28 0.312 4738 0.999 92 0.999 1 
I 1.04 1.5 - 2  2.125 54 5.1013 8.52 0.26041 1.000 0 

2.404 5.997 9.61 0.2506 1.000 1 .oo - 
0.250 1 1.000 - - 

-8 8.009- 13.85- - 0.33 1.01 - - 

2 
- 5  
- J 2 / 2  2.5282 6.32 - 

( A  = 1 )  8.011 13.95 
-- :: 5.43- 9.7- - 0.33 0.96 
( A  =0.5) 5.45 9.95 

- - 

Here we have been unable to make an educated guess of the analytic form of the E 

dependence of x ~ , ~ .  The value for E = 1 corresponds to the conjectured value (von 
Gehlen et a1 1986, Nienhuis and Knops 1985) x1., = g. We notice that for E = - J2 /2 ,  
xl,] reaches its obvious lower bound 

xl,l 3 a. (3.10) 

The scaling dimension of the spin-; operator is simply 

(independent of E ) .  (3.11) 

The value (3.11) for E = 1 only was known (von Gehlen et a1 1986, Nienhuis and 
Knops 1985). The statement (3.11) is confirmed by the fact that the ratio 

(3.12) 

is equal to unity for all E (see table 5). 
A simple inspection of the values of P:2)(2~5a:‘’)-’ given in table 5 suggest that 

we have two operators corresponding to P:” with anomalous dimensions x t 2  with x:,~ 
satisfying 

.292 = x T  (3.13) 

x:,2 = 1. (3.14) 

5 
x1.2 = s 

5 5 ~ ,  ( 2 )  / rta: ’)  = gx,,, 

This closes our analysis of the critical exponents. 

3.6. The Ising line 

Before proceeding with our conclusions we would like to end this section with a 
technical digression. Using the fact that the Ising line separating the ferromagnetic 
phase ( I  in figure 1) and the partially ordered phase ( I 1  in figure 11 is not known 
analytically we ask ourselves the following question: to what precision can the central 
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charge of the Virasoro algebra ( c  = in the Ising case) be determined in the case where 
the critical point is not known exactly? In order to answer our question we have 
determined A,, for several values of E ( &  > 1) using the standard method of looking at 
intercepts of the curves PY' as a function of A for successive values of the length N 
of the quantum chain. Once the critical point was determined, we have used R"' (see 
equation (2.9)) to determine 6 and equation (2.11) to determine 6~:". Their ratio, 
according to equation (2.12), determines c. 

In table 6 we list the values of A,,, [abP', and 6 for four values of E .  For E = 5 
the convergence is very poor and we have not given any approximant. This can 
probably be explained by the fact that the Ising line starts at E = 1 with zero slope. At 
E = 3 however, where A,, is determined with only four digits, the estimate for c is quite 
good, c = 0.502; it is 0.509 for E = 1.3 and 0.5004 for E = 39. From this exercise the 
reader can get a feeling of what can be expected in other applications where the critical 
point is not known exactly. 

Table 6. The Ising line. Van den Broeck-Schwanz approximants for (ab", (a\" (see 
equation ( 2 . 1 1 )  and  5 derived from R " '  (see equation (2.9)). 

1 1.049 02(4) 0.852 - - 
3 1.572 ( 1 )  1.097 6- 0.3902- 0.7765- 

1.097 9 0.3906 0.7784 
19 9.501 45 (10) 5.118 15- 0.4750- 0.932- 

5.1 18 25 0.4754 0.936 
39 I9 500 33 (51 10.127 1- 0.4874- 0.9742- 

10.127 4 0.4878 0.9748 

4. Conclusions 

The one-dimensional four-state quantum chain defined by the Hamiltonian (1.1) was 
shown to be a good laboratory for systems having continuously varying exponents. 
Because of its connection with the six-vertex model (Lieb 1967a, b)  and the Thirring 
model its properties can be easier understood. The conclusions drawn from the study 
of this system are certainly useful for the understanding of other systems with six and  
eight states which apparently have very similar properties (von Gehlen and Rittenberg 
1986a). Let us sum up  what we have learnt. 

( i )  Using equation (2.9) which fixes the normalisation of the Hamiltonian and the 
corrections to the ground-state energy with periodic boundary conditions (equation 
(2.1 1)) we have verified that the central charge c of the Virasoro algebra corresponding 
to the critical line A = 1 ( - J 2 / 2 s  E s 1 )  and the critical fan (see figure 1) is equal to 
one everywhere. For the Ising lines (see figure 1) it was checked that c = f as expected. 
This check is interesting because in this case the critical line is not known analytically 
and it is suggestive for the errors in the determination of c. 

( i i )  We have found empirically that the quadratic correction to the ground-state 
energy per site in the case of free boundary conditions (see equation (2.13)) is also 
related to the central charge c (see equation (2.14)). The relation (2.14) was also 
checked for the three-state Potts model and is probably of general validity. 
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( i i i )  The scaling dimensions for the order operator related to the charge-one sector 
(magnetic field operator) are given by equation (3.3) for the bulk and by equation 
(3.6) for the surface. For the charge-two sector there are two operators both for the 
bulk (equations (3.4) and (3.5)) and for the surface (equations (3.7) and (3.8)). One 
of them has smaller scaling dimensions for E > -J2/2, the other for E < - J 2 / 2  (inside 
the critical fan). 

(iv) We have determined numerically the scaling dimension of the spin-: (charge 
one) operator (see table 5 )  but we have not found an  analytic expression for it. We 
notice that the scaling dimensions are 
for the Kosterlitz-Thouless ( E  = -v’2/2) transition. The spin-; (charge one) operator 

for the four-state Potts model ( E  = 1) and 

has scaling dimensions 5 for all values of E .  Finally we have determined two 
two) operators with scaling dimensions given by equations (3.13) and (3.14). 

Acknowledgment 

The authors would like to thank J Cardy for informing us about relation (2.1 
to publication. 

charge 

) prior 

Note added. After submitting this paper we learnt that Blote et a/ (1986) have given a proof of the conjecture 
contained in equation (2.14). 

Further numerical studies have shown that the exponent xI,, (see equation (3.9)) has the expression: 

4 + x 3  

We have also found that the operator with scaling dimension x& (see equation (3.13)) has spin zero while 
the operator with scaling dimension x& (see equation (3.14)) has spin one. 
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